衡阳派盒市场营销有限公司

您好,歡迎來電子發燒友網! ,新用戶?[免費注冊]

您的位置:電子發燒友網>源碼下載>數值算法/人工智能>

基于多策略協同作用的粒子群優化MSPSO算法

大小:0.80 MB 人氣: 2017-12-21 需要積分:1

  針對粒子群優化(PSO)算法容易早熟收斂、在進化后期收斂精度低的缺點,提出了一種基于多策略協同作用的粒子群優化( MSPSO)算法。首先,設定一個概率閾值為0.3,在粒子迭代過程中,如果隨機生成的概率值小于閾值,則采用對當前種群中的最優個體進行反向學習并生成其反向解,以提高算法的收斂速度和收斂精度;否則,算法執行對粒子的位置進行高斯變異策略,以增強種群的多樣性;其次,提出一種將柯西分布的比例參數進行線性遞減的柯西變異策略,能夠產生更好的解引導粒子向最優解空間運動;最后,在8個標準測試函數上進行仿真測試,MSPSO算法在Rosenbrock、Schwefel‘s P2. 22、Rotated Ackley、Quadric Noise、Ackley函數上收斂的平均值分別為1.68E+ 01、2.36E -283、8.88E -16、2.78E - 05、8.88E - 16,在Sphere、G riewank和Rastrigin函數上收斂達到最優解0,優于高斯擾動粒子群優化( GDPSO)算法、基于柯西變異的反向學習粒子群優化(GOPSO)算法。結果表明,所提出的算法收斂精度高,能避免粒子陷入局部最優。

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

      發表評論

      用戶評論
      評價:好評中評差評

      發表評論,獲取積分! 請遵守相關規定!

      ?
      云鼎娱乐场送彩金| 大发888如何下载| 百家乐官网云顶| 大发888下载大发888游戏平台| 百家乐官网猪仔路| 百家乐官网玩法的技巧| 二八杠游戏平台| 博彩百家乐软件| 在线百家乐官网电脑| 真钱百家乐| 大发888pt| 百家乐微笑打法| 24山风水四大局| 现金百家乐官网赌法| 平度市| 大发888赌博网站| 百家乐赌博牌路分析| 葡京百家乐玩法| 澳门顶级赌场手机版| 水果机破解| 总玩百家乐有赢的吗| 怎样玩百家乐才能| 百家乐注册平台排名| 百家乐官网技巧微笑心法 | 澳门百家乐文章| 百家乐官网游戏什么时间容易出| 真钱百家乐官网注册送| 邹城市| 天等县| 鄯善县| 贵族娱乐城信誉| 香港六合彩资料| a8娱乐城开户| 最新娱乐城注册送体验金| 大发888老虎机下载免费| 威尼斯人娱乐城博彩网站| 索罗门百家乐的玩法技巧和规则 | 最佳场百家乐官网的玩法技巧和规则| 至尊百家乐官网qvod| 百家乐官网的方法和公式| 周至县|